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COMPARISON OF ONE- AND TWO-DIMENSIONAL HEAT-TRANSFER 

CALCULATIONS IN CENTRAL FIN-TUBE RADIATORS 

by Norbert 0. Stockman, Edward C. Bittner, and Earl L. Sprague 

Lewis Research Center 

SUMMARY 

An analysis is given of the two-dimensional heat transfer, including gray body radiant 
interchange, in the cross section of a central fin-tube radiator panel. 
analysis are used to evaluate several one-dimensional methods of varying complexity for 
calculating the heat rejection rate of a central fin-tube radiator panel. Most methods 
gave good agreement with the two-dimensional results. In view of the excellent agree- 
ment of one of the simpler methods which neglects tube wall temperature drop and ac- 
counts for radiant interchange between fin and tube simply by using the projected area of 
the tube, it seems unwarranted to use the more complex methods which gave no better 
agreement. Details of the numerical method of solution of the two-dimensional equations 
are given in an appendix. 

Results of this 

INTRODUCTION 

Electric power generation systems for space applications must reject large amounts 
of waste heat. At the present state of the art, the most likely method of rejecting this 
heat is by means of a radiator that utilizes some sort of fin and tube configuration. Var- 
ious fin and tube combinations have been proposed, but only the central fin-tube geometry 
(fig. 1) will be considered in this report. Since the radiator represents a large portion 
of the powerplant weight, it must be accurately designed. Radiator design calculations 
are usually based on the assumption of one-dimensional heat transfer in the cross section 
of the fin and tube panel. Several different methods have been used to compute the heat 
rejection from central fin-tube panels (e. g., refs. 1 to 8).  These methods contain vary- 
ing degrees of complexity, and it is not obvious which methods are more accurate. 

fin-tube heat transfer were carried out at NASA Lewis Research Center.. These calcula- 
In order to evaluate the one-dimensional methods, two-dimensional calculations of 
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Figure 1. - Fin-tube radiator. 

tions involved fewer assumptions than any of the one-dimensional methods and therefore 
are assumed to give a more accurate representation of the heat rejection. The analysis 
of the two-dimensional conduction in the cross section of a central fin-tube radiator panel 
with radiation from both surfaces and radiant interchange among the fin and tube surfaces 
is presented herein. The numerical method of solution is detailed in an appendix. Heat 
rejection obtained by the two-dimensional calculations is compared to that obtained by 
several different one-dimensional methods for 39 specific design geometries divided into 
the following three groups: (1) 13 miscellaneous designs for various power system appli- 
cations; (2) 11 cases arbitrarily created to study the effect of changes in the fin-tube de- 
sign variables on the comparison between one- and two-dimensional results; and (3) 15 off- 
design configurations based on a near-minimum-weight design for a Brayton cycle radi- 
ator. 

ANALYSIS 

The heat rejection rate of the cross section of the fin-tube panel of a radiator of the 
type shown in figure 1 will be computed by several different methods. Details of the two- 
dimensional analysis, including the calculation of the heat rejection rate, will be given, 
and formulas for calculating the heat rejection rate by several one-dimensional methods 
will be presented without detailed development. 
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Assumptions 

All the methods (one- and two-dimensional) are based on steady-state heat conduction 
in the cross section of the fin and tube, radiation from both fin and tube surfaces, and the 
following specific assumptions (other more restrictive assumptions are required for cal- 
culating heat rejection rate by the various one-dimensional methods, and these will be 
given later with the formulas for heat rejection rate for each method): 

tubes. 
(1) The radiator is infinitely long and made up of an infinite number of identical finned 

(2) The inside tube wall  is isothermal both longitudinally and circumferentially. 
(3) The tubes and fins are made of the same material, and the material properties 

are assumed invariant with temperature. 
(4) If there is a liner (as in fig. l), it is of the same material as the tube and is in 

perfect thermal contact with the tube. 
(5) Incident radiation from external sources such as Sun and planets and adjacent ve- 

hicle components is accounted for by a completely encompassing surface of constant tem- 
perature called the equivalent sink temperature Ts (ref. 9). This temperature is as- 
sumed to be the same on both sides of the radiator. 

perature. 
(6) Radiating surfaces are gray at a prescribed value of emittance invariant with tem- 

(7) Absorptance is equal to emittance and equal to one minus the reflectance. 
The assumptions of the same sink temperature on both sides of the radiator and the 

same inside temperature for all tubes assures symmetry about the three center lines of 
the section as shown in figure 2, and thus only the shaded portion need be analyzed. Radi- 
ant interchange with surfaces outside the shaded region is included, however. It should 
also be pointed out that, in the two-dimensional analysis, the outside tube surface is not 
isothermal, and radiant interchange between individual points (increments of area) on the 
fin and tube surfaces is taken into account. Furthermore, this interchange extends into 
the axial direction (perpendicular to the plane of the cross section) and is accounted for in 
the development of the interchange view factor (see next section). 

Since the one-dimensional methods require all the assumptions of the two-dimensional 

Tube 1 Tube 2 

I 
2 t I  fs L 

Figure 2. -Two-dimensional cross section of fin-tube radiator showing region analyzed (shaded area). 
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plus additional ones, the two-dimensional results are the limit to which the one- 
dimensional results tend with increasing refinement. Thus the two-dimensional heat re- 
jection is used as the standard to evaluate the relative merits of the one-dimensional 
methods. In the next section, the differential equation and boundary conditions governing 
the two-dimensional heat transfer in the fin cross section under the assumptions listed 
previously will be presented. 

Equation's and Boundary Conditions 

The steady-state two-dimensional heat flow in the fin and tube cross section is given 

(1) 2 V T = O  

where T is the temperature. (All symbols are defined in appendix A,)  The Laplacian 
operator V2 is written in polar coordinates in the tube and in rectangular coordinates 
in the fin (fig. 3) to simplify grid generation for the numerical solution. 

Thus, in the tube 

and in the fin 

2 2 a T + a T = 0  
;hr2 ay2 

Y 

t 

Figure 3. - Sample grid for numerical solution. 

4 



These are the two partial differential equations which must be solved. The solutions must 
also satisfy the following boundary conditions. Along the inside tube wall at r = rin, the 
temperature is prescribed: 

There is no heat flow across the lines cp = 0 and cp = (n/2) in the tube because of sym- 
metry, so 

Also, because of symmetry, there is no heat flow across the lines y = 0 and x = Q + ro 
in the fin, so that 

= o  
x=Q +r 0 

On the surface of the tube at r = ro there is radiation to space where the sink tem- 
perature is Ts and interchange with surfaces of the fin and the adjacent tube. The 
boundary condition for net heat rejection from the tube surface can be written as 

4 = e a T 4 -  ( Y H = E ( O T  - H) 

0 
r =r 

where E is the emittance, (Y is the absorptance of the surface, and H is the incident 
radiation including that from the sink and from other parts of the raditor surface. Simi- 
larly on the surface of the fin at y = t, the net heat rejection is 

aT 4 

aY 
-k-=E(OT - H) 

Since that part of the incident radiation H contributed by the radiator surface is unknown 
and must be determined as part of the solution of the problem, H must be written in a 
form in which the radiator surface radiation appears explicitly. The equation for H, 
derived in appendix B, is 
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where BdA is the radiosity (the total energy per unit time and unit area) leaving an ele- 
ment dA on the fin-tube surface and for a particular element dA* is given by 

Substituting equation (8) into equation (9) and replacing p by 1 - E yield 

In equations (8) to (10) dFdA*-dA is the view factor from a particular element dA* 
to any other element dA; that is, it is that fraction of the total heat per unit time leaving 
dA* which strikes dA. The integrals in these equations represent integrals over all 
parts of the fin and tube visible from dA*. Thus, for example, i f  dA* is on the left 
tube (fig. 4), then 

is the view factor from the element ro dql  on tube 1 to the element where dF 

dx on the fin, xL and xu are the lower and upper limits, respectively, of visibility on 
the fin from ro dP1, dFrodql-rodq, is the view factor from element ro dql  on tube 1 

row 1-dx 

Figure 4. -Example of limits of visibility. 
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to element ro dq2 on tube 2, and q2L and qZu are the lower and upper limits, re- 
spectively, of visibility on tube 2 from ro dql. 
several fin-tube radiator configurations are given in ref. 10.) 

(View factors and limits of visibility for 

It should be noted that the areas here (and heat rejection rates later) are per unit 
' axial length. This is to avoid infinite quantities since the axial length is assumed infinite. 

The view factors, however, are actually between elements of area of infinite length. (This 
presents no problem since view factors are fractional quantities and may be defined for 

is that portion of the radiation infinite areas.) For example, the view factor dF  

leaving the area ro dql  by infinite length on tube 1 and striking the area dx by infinite 
length on the fin. It can be seen that the radiation leaving the surface at a certain axial 
location on the tube but striking a different axial location on the fin is accounted for in the 
view factor. 

a ,  and t and the temperatures Tin and Ts determine the temperature distribution 
throughout the fin and tube. Equations (2) and (3) are differential equations in T; equa- 
tion (10) is an integral equation in B; and T and B a re  related through equations (7) 
and (8). The equations were solved numerically on an IBM 7094 using a finite difference 
block overrelaxation method. Details of the numerical method of solution a re  given in 
appendix C. 

r,dq 1-dx 

Equations (2) to (8) and equation (10) in addition to the prescribed geometry rin, ro, 

Heat Rejection 

The temperature distribution resulting from the solution of the equations of the pre- 
ceding section is used to obtain a net heat rejection rate. The net heat rejection rate is 
also calculated by several one-dimensional methods for comparison with the two- 
dimensional results. 

tained, the net heat rejected Q2D by the radiator per unit axial length for one quadrant 
can be obtained by integrating the left-hand side of equation (7a) over the tube outer sur- 
face and the left-hand side of equation (7b) over the fin outer surface; that is, 

Two-dimensional. - Once the two-dimensional temperature distribution has been ob- 

One-dimensional. - Several one-dimensional methods of calculating the net heat re- 
jection rate will be considered. The formula and a brief description of each method, 
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which will hereinafter be referred to by i ts  number, follows. All methods are based on 
the assumptions of constant tube outer surface temperature and of one-dimensional heat 
conduction in a radiating fin. The conduction in the fin is accounted for by a fin efficiency 
or an overall efficiency. The fin efficiency depends, in general, on two dimensionless 
parameters: the conductance parameter h = caTbl /kt, and the sink temperature ratio 
Ts/Tb. The temperature Tb is the fin base temperature and is equal to To or T. in 
depending on.whether or not the tube wall temperature drop is taken into account. When 
radiant interchange with the tube is taken into account, an overall efficiency is used that 
depends on h and Ts/Tb and also on a third parameter, the fin-tube profile ratio Q/ro. 

The items that differ from method to method are whether or not a radial one- 
dimensional temperature drop across the tube is considered (i. e. , whether Tb equals 
T or Tin); how radiant interchange between the radiator surfaces is accounted for, i f  
at all; what area is used for the tube radiating surface; and how nonblackbody effects ( E )  

are handled. In all methods except (6), the nonblackbody effect is handled simply by in- 
troducing E into the formula for &. The methods, which follow, are summarized in 
table I. 

3 2  

0 

Method 1: 

Q~ = €0 (T!~ - T:) (llinl + - ro 
2 " )  

where qin is the fin efficiency based on a fin base temperature equal to Tin. Fin effi- 
ciency for this and the next three methods includes the effect of the sink temperature Ts 
but not the effect of interchange with the adjacent tubes. 

is neglected, and the actual area of the tube is used. The fin efficiency qin is a function 
primarily of hin and secondarily of Ts/Tin and can be obtained from reference 9. 

No temperature drop in the tube is considered (i. e. , Tb = Tin), radiant interchange 

Method 2: 

This is the same 
actual area. 

as method 1 except that the tube projected area is used instead of the 
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TABLE I. - SUMMARY OF ONE-DIMENSIONAL METHODS OF CALCULATING 

Method 

1 

2 

3 

4 

5 

6 

HEAT REJECTION RATE Q 

Formula remperature 
drop across 
tube wall 

No 

No 

Yes 

Yes 

Yes 

Yes 

Interchange 

None 

None 

None 

Approximated by 
factor of 0.85 

Accounted for in 
qT based on Xo 

q: based on Nc 
Accounted for in 

hbe  area 

Actual 

Projected 

Projected 

Actual 

Projected 

Projected 

Method 3: 

This is the same as method 2 except that a temperature drop across the tube wall  is con- 
sidered and the fin efficiency 7 is based on fin base temperature equal to the tube outside 
wall temperature and is a function of Xo and Ts/To. 

Method 4: 

This method uses the tube wall temperature drop and the actual area of the tube and ac- 
counts for the radiant interchange by the approximate interchange factor of 0.85. The 
results of reference 8 are based on this method. 

Method 5: 



This method uses the temperature drop in the tube and the projected area of the tube. 
Both the radiant interchange and the fin temperature distribution are accounted for by an 
overall effectiveness vT which is a function of A,, Ts/To, and Q/ro (see, e. g., refs. 4 
and 6). 

Method 6 : 

This method is similar to method 5 except that r]: is for a blackbody and is based on Nc 
instead of X where Nc = ho/c,  and the nonblackbody effect is accounted for by an apar- 

0' - 
ent emissivity E .  The apparent emissivity accounts for the multiple reflections among 
the fin and tube surfaces by considering the fin and tubes to be an isothermal cavity of 
specified local surface emittance E .  The apparent emissivity is a function of E (held 
constant in this report), Q/ro, and Ts/To, while r]: is a function of Nc, Q/ro, and 
Ts/To. This method is developed in reference 5. 

Overall Radiator Efficiency 

The heat rejection rates calculated by both the one-dimensional and two-dimensional 
analyses are normalized by dividing by an "ideal" heat rejection rate Qid to form a so- 
called radiator or  heat rejection efficiency; thus, 

Q r] =- 

Qid 
(19) 

rr  llle advantage of comparing all the analyses on the basis of r] is that the resulting values 
always lie between 0 and 1 (except method 1 in one case) regardless of the size or temper- 
ature level of the radiator section. The normalizing factor was arbitrarily chosen as 

that is, the ideal heat rejection rate is based on the inside wall temperature and the pro- 
jected area of the tube. 

An additional advantage for the use of Qid is that the efficiency for the one- 
dimensional analyses can be expressed in terms of nondimensional parameters, and 
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these same parameters can be carried over to the two-dimensional analysis. 

the two-dimensional equations are nondimensionalized in appendix D in such a way that 
the usual one-dimensional parameters appear. It is shown that the two-dimensional heat 
transfer depends on Xin, Q/ro, O s  (which are one-dimensional parameters) and also on 

- Two-dimensional. -___ - To facilitate comparison of one- and two-dimensional methods, 

ro/rin and t/Q. 

equations (12) to (20), and in terms of the dimensionless parameters of appendix D, is 
given by 

The two-dimensional efficiency q2D defined as Q2D/Qid is formed by the ratio of 

One-dimensional. - The one-dimensional efficiency, denoted by qi for method i, is 
defined as Qi/Qid. In terms of dimensionless parameters, these ratios become as 
follows: 

P a  
2 

+- “in - 
rO “1 = 

Q - + 1  

Q vin- + 1 
rO “2 = 

Q - + 1  
0 

r 
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714 = 

+j 2 

where 

RESULTS AND DlSCU SSlON 

Results were obtained for several cases divided into three groups as indicated in 
table II. Group A consists of several radiators that were designed for various power 
system applications and a r e  near minimum weight design. These radiators cover a wide 
range of actual dimensional variables. Group B is a set of parametric cases obtained by 
choosing three values of each dimensionless variable in order to study the effect on one- 
and two-dimensional agreement of varying each parameter independently of the others. 
Group C is a set  of off-design Brayton cycle cases. The basic design case is a near- 
minimum weight radiator for a Brayton cycle space powerplant. This basic design case 
was altered by arbitrarily varying the inside tube temperature and the outside tube radius. 

Radiating Effectiveness 

The first results to be presented are the comparison of the one-dimensional radiator 
effectiveness with the two-dimensional shown in figures 5(a) to (f) .  The comparison for 
method 1 is shown in figure 5(a). In all cases the one-'dimensional effectiveness is too 
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link 
Imper- 
iture 
ratio, 

@S 

El 
rial 

Emit- 
tance, 

E 

Temper 
ature, 
inside 
tube 
wall, 

Tin* 
aR 

8.6  -4 .5  
8.6 -3.4 
8.6 -4 .4  

11.2 -3 .5  
11.1 -3.6 

19.6 -3.3 
2.6 -3.6 

25.4 .7 
26.0 . 4  
26.7 . 5  

9 . 8  - . 5  
26.4 - . l  
20.8 

-4.5 -7.7 
-3 .4  -7.7 
-4.4 -7.8 
-3.7 -5.7 
-3.8 -5.7 

-4.7 . 1  
-3.7-12.8 
-2 .2  3 .5  
-3 .0  3.5 
-3 .3  3.5 

-.7-7.0 
-3 .4  3.9 

- . 9 - 2 . 5  1 .1  

2.0 -3.8 
1 . 3  -3 .2  
2 . 3  -3.7 
- . 3  -2.2 
- . 4  -2.3 

1 . 5  . 9  
3.3 -5.6 
2 .0  2 . 4  
2 . 3  2 .6  
2 .7  2 .8  

. 6  -1.4 
2 .4  2 . 7  
1 . 4  1 . 5  

3.5 1 . 6  
2 . 0  .6 
5 . 0  3.0 
- . l  1 .7  
3 . 2  0 

2.2 - . 4  
4 .5  2.6 
6 . 4  4 . 5  
2 . 3  . 4  
3.9 1 . 8  
3.5 1 .6  

~ 

Parametric cases (B) 

Off-design Brayton cases (C) 

1.001 
,864 
,705 

1.50 
1.54 

1.39 
,503 
,499 
,740 
,924 

,623 
,804 
,569 

1.00 
,884 
,705 

1.50 
1.54 

1.38 
,502 
.487 
.719 
,894 

.622 
,781 
,561 

1 
2 
3 A l  
4 %  
5 A l  

6 S S  
7 A l  

9 %  
10 

11 
12 
13 

A1 
A1 

8 B e  

Cb 

Al 
Cb 
Be 

1 5 . 7  1 . 8  
12.7 1 . 1  
19 .5  2 . 5  
33.8 -2 .5  
9 . 5  3.0 

13.7 . 1  
17.4 3.4 
20.0 5 . 6  
13.9 . 3  
1 6 . 3  2 . 0  
1 5 . 6  1 . 8  

0 . 9  -2.6 
. 6 - 4 . 7  
.7 - . 3  

-8.4 7 . 0  
2.6 -7 .2  

- .4  -3 .8  
1 .9  -1.7 
3.7 . 1  
- . 4  -3 .8  
1 . 0 - 2 . 1  

. 9  - 2 . 7  I 

0.452 12.8 
6 . 9  

16.5 
10 .4  1 14.8 

.746 9 . 2  
,529 11.4 
,410 13.8 
,334 1 6 . 2  
,286 18.5 

.258 20. 3 

.235 22.1 

.216 24.0 
,200 26.0 
,188 27.9 

-0 .7  
- . 8  

-1 .4  
- . 4  

-1.1 

-.7 
- . 6  
- . 8  

-1 .2  
-1.4 

-1 .5  
-1 .5  
-1.3 
- . 9  
- . 4  

.1 .2  
- . 8  

2 . 5  
-.I 

-1.9 

- . 8  
.1 .0  
.1.5 
.2 .3  
.3 .3  

.4.0 

.4.7 
-5.5 
-6.2 
-6.8 

-4.6 
-9 .2  
-2.1 
-6 .4  
-3.2 

-7 .3  
-5.6 
-3.9 
-2.4 
- 1 . 2  

- . 5  
.1 
.7 

1 . 1  
1 . 4  

0.999 0.994 
,998 
,989 
.997 I ,992 

,223 ,223 
,625 .623 

1 .34  1 .34  
2.47 2.45 
3.97 3.90 

6 . 0  
12 .0  
4 . 0  
8 . 0  
4 . 8  

6 . 0  

) 7.21 

I 

5. 38 
7.10 
9.16 
1.57 
3.97 

5.25 
6 .88  
8.79 

10.99 
13.15 

TABLE II. - INPUT DATA AND PERCENT DIFFERENCE RESULTS 

Dimensionless parameters Physical dimenaioM I Percent difference 

I I 
Design cases (A) 

748 
707 
838 

1149 
1149 

1149 
607 

1656 
1700 
1664 

1125 
2210 
1670 

I. 0084 
.0129 
,0025 
,0078 
,0106 

,0158 
. 0034 
.0572 
,0501 
,0402 

,0184 
,0264 
,0258 

4.17 
5.20 
1.58 
2.13 
3.07 

1. 06 
2. 56 
1 . 6 3  
1.74 
1.46 

2.37 

1.10 
,763 

111 
110 
108 

112 

10 
110 

54 
51.5 
34 

90 
38 
49.5 

75.5 

1.39 
1 .33  
3.07 
1.63 
2.04 

1.89 
3.41 
2.60 
2.67 
2.69 

3.74 
2 .03  
2. 35 

'i 
1 . 4  
3 .0  
2 .0  

I 

6 .  00 
6. 50 
S. 40 
6 . 0 0  
6 . 0 0  

3.00 
2.00 
2.00 
2.08 
2.17 

7.40 
2.00 
2 .50  

6 .0  
6 . 0  
6 . 0  
1 .0  
5 . 0  

6 . 0  I 

0 

0.992 
,498 

1.97 
,953 
,997 

,996 
,987 
.984 
,994 
,995 
,991 

1 
2 
3 
4 
5 

6 
7 
8 
9 

10 
11 

I 1 . 0  
. 5  

2.0 
1 .0  

I 

- 
0 . 5  
2. 7 

. 3  
1 . 3  
0 

1 . 3  
-. 8 
-. 2 

. 5  
1 . 2  

1 . 7  
2 . 2  
2 .6  
3 .0  
3.4 - 

1 . 4  
. 1  

1 . 4  
1 .1  
1 . 5  

-. 6 
. 8  

1 . 7  
2 . 5  
3.1 

3.5 
3 .8  
4 . 1  
4 . 4  
4 . 7  

~ 

1 . 2  
. 6  

1 . 8  
. 9  

1 . 5  

60 2.4  
1 . 2  
3.6 
1 . 8  
3.0 

. o  1 
2 
3 
4 
5 

6 
7 
8 
9 

10 

11 
12 
13 
14 
15 

536 
756 
9 76 

1196 
1400 

1550 
1700 
1850 
2000 
2130 

'Ao is not an independent parameter in the two-dimensional method but is in some of the one-dimensional methods. 

bPhysical dimensions not applicable. 
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I 

I 

I I I I I  
Case 

0 A Miscellaneous design 
0 B Parametric 
A C Off-design Brayton / 

cu 
F 

(b) Method 2, Q2 - eo(fn - l$qinl + ro). 

/ 

(dlMethod4. Q 4 - 0 . 8 5 ~ 0 ( ~ - T $ 7 7 0 L  +ire). 

/ 
1.0 

.8 

.6  
In 
F 

.4 

. 2  

0 . 2  . 4  

/ 

1 

k 
+I 

I -  

.a  

B 

.o 
F 

0 . 2  1.0 
Two-dimensional effectiveness, qZD 

(e) Method 5, Q5 - q p ( <  ; T$j + ro). (0 Method 6, Q6 .r),.W(( - + rd. 
Figure 5. -Comparison of overall effectiveness obtained by one-dimensional methods with that oMained bytwo- 

dimensional method. 
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large, all the points falling above the line of equality. This is because method 1 neglects 
the temperature drop in the tube and uses the actual tube area without allowing for any 
interchange with the result that the calculated tube heat rejection rate is too high. Thus 
the worst points on figure 5(a) are for cases having a relatively small value of Q/ro (as 
can be seen in table II), which makes the tube heat rejection contribution more important. 

Figure 5(b) shows the comparison for method 2. Here the agreement is quite good 
even though the temperature drop in the tube is neglected. 

The comparison for method 3 is shown in figure 5(c). Here the agreement is also 
quite good but no better than for method 2. Method 3 is the same as method 2 except that 
the temperature drop in the tube is taken into account. Thus, for the range of cases 
studied, the tube wall temperature drop seems relatively unimportant. 

is considerable scatter. This is probably due to the attempt to account for the radiant 
interchange by using the constant factor of 0.85. 

Figure 5(e) shows the comparison for method 5. Here the agreement is quite good 
and there is very little scatter. It is no better, however, than methods 2 or 3 which are 
simpler. There is also quite good agreement and very little scatter in figure 5(f), which 
shows the comparison for method 6. Method 6 is not significantly better than methods 2 
or 3 but it is the most complicated of all the one-dimensional methods. 

To summarize, one-dimensional methods 2, 3, 5, and 6 show good agreement with 
two-dimensional; whereas method 1 shows very poor agreement and method 4 shows fair 
agreement. 

The comparison for method 4 is shown in figure 5(d). The agreement is fair but there 

Pe rce n t Di  f fe re nce 

The agreement between one- and two-dimensional calculation can also be evaluated 
by the percent difference Ei defined as 

The percent difference for each method and for each case analyzed is given in table II. 
Here the agreement can be seen in relation to the input parameters of the various groups 
of cases. It should be noted that a positive percent difference means that the one- 
dimensional method is predicting too high a heat rejection rate, and a negative percent 
difference means too low a rate. 

The percent difference data is summarized in table III in the form of average abso- 
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, , , .. . - ......-.--..- - I I 1  

A 13 26.5 4.5 4.712.8 
B 11 33.8 5.6 8.4 7.0 
C 15 27.9 1.5 6.8 9.2 

TABU3 m. - S U M M Y  OF DIFFERENCE DATA 

3.3 5.6 
6.4 4.5 
4.7 3.4 

Group I Number I Method 

Average absolute percent difference 

Overall 39 

Maximum abs lute percent difference 

2.7 
1.7 
1.4 
1.9 

lute values of percent difference and 
the maximum absolute value of percent 
difference. As in figure 5, it can be 
seen here that methods 2, 3, 5, and 
6 are in good agreement with the two- 
dimensional method. The best meth- 
ods, on the average, are 2 and 6, with 
values of average absolute percent dif- 
ference of 1.8 and 1.9, respectively. 
Both methods have a value of 5.6 for 
the maximum absolute percent differ- 
ence, which is an indication of the per- 
formance of a method at its worst. 
Thus it appears that for the average 
radiator configurations likely to be 

encountered, method 2 will give as close agreement with the two-dimensional as method 6. 
Method 2 has the advantage of being simpler than method 6. 

The heat rejection formula for method 2 (eq. (14)) contains only prescribed quantities 
except for qin which is a function of hin and Ts/Tin. Curves for qin are readily 
available in the literature (e. g., ref. 9). Furthermore, Ts/Tin can often be assumed to 
be zero and only one curve (qin against hin) need be used. On the other hand, the for- 
mula for method 6 (eq. (18)), contains three quantities not directly prescribed To, q:, 
and T .  The outside tube wall temperature To is calculated by assuming one-dimensional 
radial heat conduction in a radiating tube. The overall blackbody effectiveness q; is a 
function of Nc, Q/ro, and Ts/To; Ts/To is often assumed to be zero and is obtained 
by interpolation from plots of q: against P / ro  and Nc (ref. 5). The apparent emissivity 
T is a function of E ,  Q/ro, and Ts/T * here Ts/To is assumed to be zero and T is 
obtained by interpolation from plots of E against Q/ro and E (ref. 5). 

Because of its simplicity and accuracy, method 2 is recommended for central fin- 
tube radiator calculations except for cases with very large ro/ri (say, greater than 4.0). 
For these latter cases, method 3, which is only slightly more complicated (the temper- 
ature drop in the tube must be calculated), can be used. 

0: 

Effect of Input Parameters on Percent Difference 

The cases of group B in table 11 were analyzed in order to determine the effect of the 
independent dimensionless parameters on percent difference. Case B1 is the standard 
case and its parameters have typical values as obtained in current near-minimum-weight 
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Independent dimensionless parameters 

Figure 6. -Effect of change in independent dimensionless parameters on percent difference. 

design studies at Lewis. The other cases were obtained by holding all parameters but one 
constant and taking high and low extreme values spanning the range of current interest. 
For example, case B1 has a kin of 1.0, case B2 of 0. 5, and case B3 of 2.0 with the 
other parameters being identical for all three cases. This results in three data points 
for each parameter. The results are shown in figure 6 for one-dimensional methods 2, 
3, 5, and 6.  It should be pointed out that the level of the curves (i. e., their location rel- 
ative to zero percent difference) is the result of the particular set of parameters chosen 
for the standard case. 

In looking at all the parts of figure 6, it can be seen that, in general, variation in 
Q/ro has the greatest effect (particularly at small Q/ro), variation in t/Q has the next 
greatest effect, and variation in 8 ,  has practically no effect. 
tion is that all four methods exhibit essentially the same trends except for the Q/ro curve 
for method 6. 

Another general observa- 

CONCLU SlON S 

Results of the two-dimensional analysis of the heat transfer in the cross section of a 
central fin-tube radiator have been used to evaluate several one-dimensional methods of 
calculating the heat rejection rate of such radiators. Most of the one-dimensional methods 
give good agreement with the two-dimensional; however, they a re  of varying degrees of 
complexity. In view of the good agreement of the method (number 2) that neglects tube 
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wall temperature drop and accounts for radiant interchange simply by using the projected 
area of the tube, it seems unwarranted to use more complicated methods. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, June 30, 1966, 
120-27-04-36 -22. 
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APPENDIX A 

SYMBOLS 

A 

B 

a 
dA* 

Ei 

F1-2 

H 

8 

k 

L 

Q 

NC 

Q 

&id 
q 

R 

r 

S 

T 

area of radiator surface per unit 
axial length 

radiosity, sum of emitted plus re- 
flected energy leaving surface 
per unit time and area 

particular element of area 

percent difference of method i 

view factor, fraction of radiant 
energy leaving surface 1 that 
strikes surface 2 

total energy incident on a surface 
per unit time and unit area 

thermal conductivity, summation 

Qt/Q2 = t/Q 

fin half length, see fig. 2 

blackbody conductance par am eter , 
aT:Q '/kt 

index (appendix C) 

calculated heat rejection rate 

ideal heat rejection rate, eq. (20) 

energy radiated per unit time and 
per unit area 

rt/Q 

radial coordinate in tube 

arbitrary surface representing 
surroundings 

temperature 

TS 

t 

X 

X 

Y 

Y 

a 

E 

E 
- 

77 

77 in 

70 

VT 

77; 

8 

x 
P 

U 

50 

w 

equivalent sink temperature 

fin half thickness, see fig. 2 

xt/Q 

horizontal coordinate in fin 

Y V Q 2  

vertical coordinate in fin 

absorptance 

emittance 

apparent emissivity 

overall efficiency 

fin efficiency based on Tin 

fin efficiency based on To 

overall effectiveness, ref. 5 

overall effectiveness, refs. 4 and 6 

dimensionless temperature, T / T ~ ~  

conductance parameter, E uTbQ /kt 

reflectance 

Stefan- Boltz mann constant 

3 2  

angular coordinate in tube, see 
fig. 3 

over r elaxation par am eter , appen- 
dix C 

Subscripts : 

b fin base 

2D based on two-dimensional analysis 

i based on one-dimensional method i, 
i = l ,  2 . .  . 6  
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I II I I 1.111. I., I. -1.111. I I I 1  
. . . . . - 

i, j, k 

in inside tube wall 

L lower limit of visibility 

indices, appendix C U upper limit of visibility 

1 tube 1 
2 tube 2 

0 outside tube wall Superscript : 

S referring to area of arbitrary sur- m iteration number, appendix C 
face S 
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APPENDIX B 

DERIVATION OF EQUATION FOR lNCl DENT RADIATION 

The total radiation Ha* incident on an element dA* of the fin or tube is made up 
of radiation from other parts of the fin or tube and radiation from the surroundings. In 
equation form, 

where qA-dA* is the heat per unit time leaving all of the fin and tube surface A and 
striking a unit area of dA*, and qs-dA* is the heat per unit time leaving the surround- 
ings o r  sink which may be represented by an arbitrary surface S (fig. 7) and striking a 
unit area of dA*. The q's are given by 

and 

QS-dA* 
dA* 

CIS-&* = 

where QA-dA * is the heat per unit time leaving all of A and striking all of dA*, and 

Qs is that leaving all of S and striking all of dA*. The Q's a r e  given by 

and 

where BdA is the radiosity, that is, the total energy emitted plus reflected leaving dA 
per unit time, dFdA - dA* is the view factor from dA to dA*, Ts is the equivalent sink 
temperature of the surroundings, S is the area of surface S, and dFS-dA* is the view 
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factor from S to dA*. From the reciprocity theorem for view factors, 

dA dFdA,dA* = dA* dFdA*,dA 

and 

Furthermore, all the energy leaving dA* 
strikes either part of S or  part of A (see 
fig. 7) so that 

Figure 7. - Surfaces involved i n  incident radiation. c/A 

Combining equations (B6), (B4), and (B2) yields 

Combining equations (B8), (B7), (B5), and (B3), yields 

Putting equations (B9) and (B10) into equation (Bl) yields the expression for the total en- 
ergy incident on dA* per unit time: 
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APPENDIX C 

NUMERICAL METHOD OF SOLUTION 

The nonlinearity of the boundary conditions and the geometry preclude the possibility 

The numer- 
of a closed form solution of the problem outlined in the Equations and Boundary Conditions 
section (p. 4). Hence, it was necessary to attack the problem numerically. 
ical solution was obtained by replacing equations (2), (3), and (10) by their finite- 
difference analogues at points of a grid as shown in figure 3 (p. 4). The solution of the 
partial differential equations satisfies these difference equations except for an e r ror  term 
which vanishes when the grid spacing approaches zero. This in turn is reflected in an 
error  in the temperatures at the grid points which likewise vanishes as the grid is refined. 

tersection of the polar grid lines in the tube and the points of intersection of the rectangu- 
lar grid lines in the fin (fig. 3). The spacings of the rays and circular arcs in the tube 
and verticals in the fin a re  prescribed. The a rcs  in the tube and the verticals in the fin 
a re  uniformly spaced. For the spacing of rays  in the tube, however, the tube is divided 
into two regions of uniform ray  spacings; the ray spacings near the fin are finer than the 
spacings away from the fin (as illustrated in fig. 3) since the temperature gradients are 
more severe near the fin. The spacing of the horizontals in the fin is determined by the 
ends of the rays in the tube at the intersection of the tubes and fin and is thus not uniform. 
After this main grid is specified, a dual grid is constructed by bisecting the lines of the 
grid just described. 
The boundaries of the cells are the dashed lines shown in figure 8. 

The finite-difference equations for the temperatures a re  obtained by integrating 
Laplace's equation over cells of the dual grid, replacing the normal derivatives arising 
from the use of the divergence theorem by difference quotients exactly as on pages 17 and 
18 of reference 11. In the present case, however, the cells of the dual grid a re  not all 

The set of points at which the temperatures are obtained consists of the points of in- 

This results in a closed cell about each point of the original grid. 

rectangles as they are in reference 11, but some are 
annular sectors in the tube and some are irregularly 
shaped cells in the transition region, one of which is 
shaded in figure 8. The result is that the difference 
equations in the tube have coefficients modified by 
lengths of a rcs  and chords and those in the transition 
region entail six points instead of five. 

The finite-difference equations for the radiosities 
are obtained by substituting a simple quadrature for- 
mula for the integral in equation (lo), so that it reads 

Figure 8. - Cell for integration around point on inter- 
section of fin and tube. 
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where the summation is carried out over those elements dAk that are visible from ele- 
ment dA 

The result of the discretization is two sets of difference equations: one set is derived 
from equations (2) and (3) at interior points and from equations (2) to (7b) at boundary 
points, and a second set is derived from equation (10). The first set is a system of equa- 
tions for the temperature interior to and on the surface of the tube and fin with the values 

j* 

of radiosities as input to the equations at the surface points. These latter equations were 

linearized by replacing T4 by [T(m-l)I + 4b(m-1)l - T(m-l)I wherever it appears. 
4 3 

Here the superscripts refer to iteration number, and m = 1 corresponds to the initial 
approximation. The second set, typified by equation (Cl) is a system of linear equations 
for the radiosities with the values of surface temperatures as input. Initially, very 
coarse approximations were made to both temperature and radiosity. Then one iteration 
of the block successive over relaxation method was carried out on the first set of equa- 
tions. This single iteration for the temperatures was followed by as many iterations as 
needed for convergence of the Gauss-Seidel method on the linear system of equations for 
the radiosities (very few iterations were needed for this step). This process was re- 
peated, alternating between the two sets of equations until convergence was obtained. It 
was found that comparison of the net heat radiated by the fin and tube surfaces with that 
flowing into the inside surface of the tube supplied a practical criterion for the conver- 
gence of the iterative process. 

The block successive overrelaxation method mentioned previously was  like that 
described on pages 19 and 20 of reference 11, at least in the fin. In the tube, the itera- 
tion proceeded along similar lines except that here temperatures along a given ray were 
solved for simultaneously. The iteration started with the vertical ray  (at q = 7~/2), pro- 
ceeded to each ray in turn until the horizontal ray (q = 0) was reached. Then the itera- 
tion proceeded to the verticals from left to right in the fin. 

In the iterative method mentioned previously, there is an overrelaxation parameter 
w, which is free to be chosen subject to the restriction 0 < w < 2. It has been shown 
(ref. 12, ch. 4) for systems of linear equations that there is an optimum value of w for 
which convergence is fastest. Due to the nonlinearity of the problem involved herein, no 
rigorous analysis exists for the determination of a corresponding optimum value for w. 
Numerical experiments carried out at the Lewis Research Center, however, indicated 
the validity of the concept of an optimum value, and values of w obtainedin these experi- 
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ments were used for the production runs. A typical result is w = 1.93 for 690 points 
leading to convergence of the relative error  in the heat balance to less than 1.0 percent 
in 180 iterations. 
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APPENDIX D 

NONDIMENSIONAL PARAMETERS AND EQUATIONS 

In order to facilitate comparison of the two-dimensional results with one-dimensional 
results, several dimensionless quantities are formed. This set of parameters results 
from forcing the conventional one-dimensional conductance parameter hin to appear: 

3 2  EU TinQ 

kt 
- e =- TS Xin = 

S T:, 
111 

f 

Putting these parameters into the dimensional equations and boundary conditions results 
in the following: 

In the tube: 

1 ae a2e +--=o 1 a2e -- +- 

In the fin: 

& a20 +- = 0 
ax2 ay2 

2 Along the inside tube wall where R = Rin = rint/Q = (rin/Q)(t/Q): 

26 



8(Rin, cp) = 1.0 

Along cp = 0 and cp = s /2  in the tube: 

Along Y = 0 and X = (Q + ro)t/Q2 = (1 + ro/J?)t/Q: 

(E) =(E) = o  
a y  y=o ax X=(l+ro/Q)t/Q 

On the surface of the tube where R = R, = r0t/t2 = (ro/f)(t/Q): 

2 2. On the surface of the fin where Y = t /Q . 

where 

034) 

03 5) 

Thus, it can be seen that the dimensionless temperature 8 depends on the parameters 
Xin, rin/f, ro/Q, t/Q, Os,  and E .  In this report, E will always be fixed at 0.9 and can 
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be eliminated from the list of variables. Of the remaining parameters, hin, ro/Q (often 
written Q/ro), and 8, are the commonly used one-dimensional parameters and rin/Q 
and t/Q are two-dimensional parameters. Instead of rin/Q, it is more informative to 
use ro/rin, which is the ratio of ro/Q to rin/Q. To summarize, in this report the 
parameters determining the two-dimensional heat transfer in a fin-tube radiator are hin, 

ro/Q (or Q/ro), os, ro/rin, and t/Q. 
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